Friday, October18, 2019

' Manual Power Survivor 40e En'


This is the new page for displaying documents. It allows documents to display on devices without pdf viewers specifically mobile devices, a new Google requirement. Note also that some documents have blank pages. Just click on "Next Page" if that happens.
Previous Page    Next Page Go to page number Note: Page number may not agree with index page numbers

Previous Page    Next Page
Go to page number
Note: Page number may not agree with index page numbers

PDF to Text.

 PowerSurvivorTM 40E
 Endurance Series
 12 Volt & 24 Volt

Thank you...
    for purchasing a Katadyn PowerSurvivor 40E watermaker. It was built to rigorous specifications
    and designed to produce potable freshwater from clean seawater using minimal power. It is
    simple to install and operate and, with reasonable care and maintenance, can be expected to
    provide years of useful service.

    before installing or operating your watermaker, take the short time needed to read this User's
    Manual in its entirety. That small investment of time will help assure many years of trouble free
    operation from your system. We've worked hard to provide you with a reliable product that is
    affordable, compact, simple to operate and easy to maintain--the rest is up to you.

Contact us:
    Be sure to fill in the enclosed warranty card and return it to us as soon as possible. This is
    required to fulfill the terms of your warranty. For Customer Service, or information about this
    and other products from Katadyn, please use our toll free phone numbers or visit our website at

                             Katadyn North America
                                      9850 51st Avenue North
                                      Minneapolis MN 55442
                               Phone:           800 755 6701 or 763 746 3500
                               Fax:             800 548 0406 or 763 746 3540
                          Customer Service / Technical Support:
                          800 755 6701 or 763 746 3500; Option 5
                                   (International Collect Calls Accepted)
We suggest you keep a record of your Katadyn dealer's name, contact information, and the serial number of
your watermaker in the space below:

Dealer Name:           _________________________________________________________________

Address:               _________________________________________________________________

Phone/Fax/Website: _________________________________________________________________

Serial Number:         _________________________________________________________________
                                                                                Table of Contents

System Description ............................................................................................................. 2
Product Specifications ......................................................................................................... 3
Energy Recovery ................................................................................................................ 4
Installation ......................................................................................................................... 5
       Installation DOs.......................................................................................................... 5
       Installation DON`Ts .................................................................................................... 5
       Plan Ahead for Manual Operation .............................................................................. 6
       Installation Procedures ............................................................................................... 6
Using your Watermaker ..................................................................................................... 9
       Powered Operation.................................................................................................... 9
       Manual Operation...................................................................................................... 11
       Special Conditions...................................................................................................... 12
Maintenance and Service.................................................................................................... 13
       Pump Maintenance..................................................................................................... 13
       Prefilter Maintenance ................................................................................................. 14
       Membrane Storage, Biociding & Cleaning ................................................................... 15
       Seal Replacement ....................................................................................................... 18
       Troubleshooting Flowchart .......................................................................................... 24
Appendix........................................................................................................................... 25
       Glossary .................................................................................................................... 25
       Diagrams................................................................................................................... 26
       Kits & Accessories ...................................................................................................... 30
       Service Log ................................................................................................................ 31
       WARRANTY ............................................................................................................... 33

                                                     System Description
The Katadyn PowerSurvivor 40E watermaker system has several components. Refer to the System
Diagram (Figure A 1) in the Appendix for an overview of the components of the system and their
Motor/Drive/Pump/Membrane Assembly:                      At the heart of the watermaker system is a
high pressure, positive displacement pump. The pump is powered by a reliable 12 (or 24) VDC
electric motor. An oil bath gearbox (drive assembly) converts the rotary motion of the electric motor
to a powerful, reciprocating, linear motion for driving the pump piston. The pump pressurizes input
seawater to approximately 800 psi (pounds per square inch). The high pressure forces product
freshwater through a semipermeable membrane located in the membrane housing. All of these main
components have been integrated into a single, compact piece of equipment--with low power
consumption, quiet operation and a small footprint.
Prefilter Assembly: The prefilter assembly consists of one prefilter housing and a standard 30
micron prefilter element constructed of polyester fibers. Two standard elements are included with
each system. In some exceptional circumstances, an optional second prefilter assembly with a 5
micron prefilter element may be needed (see Kits & Accessories). The prefilter assembly is separate
from the pump, which allows it to be installed in a convenient and accessible location.
Valves:   Two high quality plastic 3 way valves are supplied. The prefilter 3 way valve selects
between two input sources for the prefilter assembly (and pump):
      ·        Clean seawater during normal operation
      ·        An alternate intake line for inputting biocide or a cleaning solution
The product 3 way valve allows easy selection between the two required destinations for the product
      ·        A freshwater collection tank for normal operation
      ·        A convenient drain location for testing and discarding product freshwater,
               biocide and cleaners
Note: If you collect and discard the product freshwater at the same location, manually directing the
output from the product freshwater hose may be the most practical approach. In this case, the
product 3 way valve need not be installed.

Hoses and Hardware:           Each PowerSurvivor 40E watermaker is shipped with hardware suf
ficient to perform a normal installation. The 3/8" I.D. reinforced plastic hose is used for seawater
intake and reject brine. The smaller, 3/16" I.D. clear plastic hose is for routing product freshwater.
There are also hose clamps and mounting bracket hardware for the prefilter assembly.
Customer supplied Equipment: Every installation represents a unique challenge. You or your
installer will have to provide:
       ·         a reliable source of clean seawater for input to the prefilter 3 way valve
       ·         plumbing to an appropriate drain location for the reject brine water
       ·         a plumbing solution for your freshwater collection tank.
Our Promise:      Every Katadyn PowerSurvivor 40E watermaker includes a three year factory
warranty and a long history of outstanding customer support. Our reputation for providing a quality
product--along with service when and where you need it--is unequaled in the industry. Of course,
you may never need us--but, if you do, we'll be there.

                                          Product Specifications
Power Requirements:                         4 amps @ 12 VDC; 3 amps @ 24 VDC*
Construction:                               316 Stainless Steel Pump Housing
Rate of Water Production:                   1.5 U.S. gal./hr.      (5.6 liters/hr.)
                                            ±15% @ 13.8 VDC
Feed Water Flow Rate:                       15 U.S. gal./hr.       (56 liters/hr.)
Pump Weight:                                25 lbs.                (11.3 kg.)
Pump Height:                                6"                     (15.2 cm.)
Pump Length:                                17.5"                  (44.5 cm.)
Pump Width:                                 16"                    (40.5 cm.)
Prefilter Housing Dimensions:               12" x 6"               (30 cm. x 15 cm.)
* The electric current requirement is an average figure. Instantaneous current will vary during a
complete cycle of the pump. Also, upon initial installation, you may experience modestly higher
current draw. Within a matter of hours, the average current draw should settle at the above

                                                         Energy Recovery
                    The technology behind Katadyn reverse osmosis watermakers

Reverse osmosis desalination was first developed over three decades ago. It was a major break
through in desalting technology, but the original process required a lot of power. By recovering 90%
of the energy lost in conventional reverse osmosis systems, we've made small desalinators practical,
so you can have freshwater when and where you need it.

Conventional Reverse Osmosis Desalination
The lower left portion of Figure
2 shows the basic principle of
reverse osmosis desalination.
When saltwater is forced
through a semipermeable mem
brane     at    high     enough
pressure--typically 800 psi--
pure water will pass through the
membrane, but salts will not.
The membrane acts as a barrier
to contaminants such as salts,
viruses and bacteria, separating
them from the pure water.
When seawater is forced
against a membrane, only 10%
passes through as pure water. In
a conventional system, the
remaining waste brine stream,
still under high pressure, passes
through a pressure reducing
valve and is discharged overboard. For every gallon of pure water made, up to ten gallons of
seawater must be pressurized! Therefore, 90% of the energy used in conventional reverse osmosis is

Energy Recovery Makes It Possible                The upper right portion of Figure 2 illustrates how
Katadyn systems are configured to recover and effectively re use the energy wasted in conventional
reverse osmosis. The waste brine stream contains up to 90% of the energy expended. By recovering
this energy, we are able to dramatically reduce the power needed to desalt seawater.
To do this, we developed and patented a high pressure energy recovery pump. It recycles the high
pressure brine by redirecting it to the backside of the pump's piston. By balancing the opposing force
on the piston's front side, the brine provides a power assist to the pumping operation. Seawater can
then be pressurized with much less effort.
Katadyn Watermakers              Katadyn watermakers are simple, affordable, energy efficient and
easy to use and maintain. The PowerSurvivor 40E represents the latest advancements in watermaker
technology, featuring an improved oil bath drive assembly, an all 316 stainless steel pump body,
and simplified construction for easier and less frequent maintenance.

                                           Do it right the first time and reap the rewards
The PowerSurvivor 40E watermaker utilizes a low volume, high pressure, positive displacement
pump. Unlike the centrifugal pumps found in some systems, a positive displacement pump is self
priming. It can also draw water when mounted several feet above the waterline of a vessel. Thus, the
watermaker may be installed in almost any location and orientation.
The most important part of a good installation is proper planning. Although the design and operat
ing requirements of the PowerSurvivor 40E allow much latitude for equipment location, there are
several cautions and suggestions you should consider before proceeding with an installation.

                                                                         Installation DOs
When choosing a location for the watermaker drive/pump/membrane assembly:
   5   Avoid areas with excessive heat. Ambient temperatures above 105° F (40° C) exceed the
       ratings for the electric motor, and excessive heat can damage or destroy the membrane.
       (Note: Most engine rooms get hotter than 105° F!)
   5   Choose a dry area. The motor/drive assembly is not waterproof and can corrode.
   5   Choose an area free of fuel vapors. The electric motor is not vapor proof and should not be
       operated if explosive or flammable materials are present!
   5   Find a location which allows comfortable access for routine inspection and servicing.
In addition, you should:
   5   Install the prefilter assembly in an easily accessible location! It needs regular (sometimes
       daily) inspection and maintenance. For ease of routine maintenance, the choice for this
       location is probably the single most important decision you will make--plan it carefully!
   5   Provide a shutoff valve or seacock in the seawater intake line.
   5   Install a coarse strainer in the seawater intake line.
   5   We recommend using properly sized ring terminals and a terminal strip near the pump to
       connect electric power. This allows for easy testing, removal and servicing when required.

                                                                 Installation DON'Ts
   9   Don't use a thru hull installed high on your vessel's hull for your source of seawater intake.
       This is especially important for sailboats. Even a normal amount of heel when under sail can
       cause the thru hull to be out of the water, allowing air into the intake system. A rolling
       anchorage can do the same.
   9   Don't locate the pump assembly above gear or materials that could be damaged if it leaked.
   9   Don't locate the pump assembly near to sleeping quarters, bunks, or other areas that are
       normally "quiet" areas for yourself or crew members.

                                       Plan Ahead for Manual Operation
The PowerSurvivor 40E watermaker was never intended to be part of a vessel's "Abandon Ship"
equipment. Its capability for manual operation is useful when normal ship's power is unavailable. If
you perform a typical installation, it is unlikely that you would have time to remove the watermaker
when abandoning ship. Katadyn produces other desalinators that are specifically designed to be
part of your survival equipment. Please visit our website for information on the Survivor 35 and
Survivor 06 watermakers, both of which are intended for inclusion in survival kits.
Before finalizing your installation plans, consider how you would manually operate your water
maker, should the need arise. You will require a source of seawater input and a place to drain the
reject brine, as well as a product freshwater collection container. Typically, the watermaker will have
to be moved to a location convenient for manual pumping. There are two common approaches to
implementing such an arrangement:
    ·   During your installation, leave adequate service loops in the three hoses to allow the
        watermaker to be moved to a nearby location convenient for manual operation. This
        arrangement eliminates the need to disconnect any of the hoses.
    ·   Prepare a separate set of hoses to be used during manual operation (recommended). This
        approach allows the watermaker to be moved to any location for manual operation.
More than likely, the plan you choose will be dictated by the location of the space available. In any
case, consider how you would manually operate your watermaker before finalizing your installation

                                                            Installation Procedures
Although every installation has custom aspects,
the following general instructions should be
useful to the typical installer. Refer to Figure A 1
(in the Appendix) for information on parts
identification and system connections.
1. Install Pump: After reading the comments
on the preceding pages, decide on a location
for the main pump/drive assembly. It should be
mounted with the long axis of the membrane
housing in a horizontal position. The purpose of
this requirement is to avoid two problems:
     · If the pump develops a seawater leak
        and is located directly above the drive
        assembly, the drive assembly and/or
        electric motor may be damaged (Figure
        3, left).
     · If the drive assembly develops an oil leak and is located directly above the pump, oil may
        find its way into the pumping system and damage the membrane (Figure 3, right).
We recommend securely thru bolting the pump/drive assembly to a sturdy bulkhead or platform,
using corrosion resistant 1/4" fasteners with flat washers (See Figure A 1). Pick a location that
allows ample space for routing the required hoses and electrical wires to the pump and motor.

2. Connect Electrical Power to Pump: To provide 12 (or 24) VDC electric power to the mo
tor, use a minimum of 16 gauge stranded copper
wire. We recommend 14 gauge (or larger) wire
for distances over 5 6 feet. Tinned, stranded
copper wire is preferred for marine installations
and is available in most marine hardware stores.
Figure 4 shows a typical electrical power
3. Mount Prefilter Assembly and 3
Way Valve: Lightly coat the male threads of
the middle port of the prefilter 3 way valve with a
non hardening, paste type thread sealant (e.g.,
Permatex®) to assure an airtight seal. (Note: teflon
tape is not recommended.)
     1. Carefully thread the middle port of the prefilter 3 way valve into the "IN" port of the prefilter
        housing. Do not overtighten this connection. When assembled correctly, the long axis of the
        3 way valve should be vertical (See Figure A 1).
     2. Fasten the supplied right angled mounting bracket for the prefilter assembly to a bulkhead.
        Orient it so the prefilter assembly will be vertical, with the bowl underneath. We recommend
        that it be thru bolted with corrosion resistant hardware.
     3. Screw the top of the prefilter housing to the bracket with the supplied screws. One port of the
        prefilter 3 way valve should project above the housing through the notch in the mounting

4. Install Seawater Intake Plumbing: There are two common approaches to providing the
seawater intake circuit:
   · Tee into an existing seawater intake (e.g., engine cooling water or manual seawater pump
   · Install a dedicated thru hull for the watermaker.
Either of these configurations should meet the following criteria:
    · It should be at a low point on the vessel's hull, to minimize the chance of air intake during
        heeling or rough conditions.
    · The thru hull should be a minimum of 1/2" I.D., and possibly larger if it is a shared inlet.
        (Note: If there is the possibility that in the future you will want to upgrade to a higher
        capacity unit--or perhaps a second PowerSurvivor 40E to implement redundant systems--
        you should consider substituting 1/2" I.D. hoses and hose fittings during your initial
    · An easy to reach seacock should be installed on the thru hull immediately inside the hull.
    · A coarse seawater strainer is strongly recommended. It should be easy to reach and clean.

      ·   The easiest and most commonly used approach is to tee into an existing seawater intake
          system. Because the flow rate and volume of seawater intake for the PowerSurvivor 40E are
          both extremely low, the pump can be adequately supplied by most pre existing intakes--even
          inlets that operate at modest negative pressures, such as the cooling water inlet for an engine
          or generator.
When teeing into an existing seawater supply, we recommend installing a separate seacock or valve
(in addition to the one at the thru hull) to independently control the supply to the watermaker.

5. Install Reject Brine Plumbing: The reject brine water can be teed into an existing scupper
or sink drain hose for draining overboard. Use the 3/8" reinforced hose and supplied hose clamps.
A tee of the correct size will have to be supplied. Alternatively, a dedicated thru hull may be installed
at a convenient location. In this case, we recommend that a seacock be installed at the thru hull.

6. Install Product Freshwater Plumbing: Your product freshwater plumbing design should
allow for both saving and discarding of product freshwater. This normally requires (1) a drain loca
tion and (2) a container for collecting good product freshwater.
In no case should the product freshwater hose be permanently plumbed into the ship's potable water
storage tank(s), without providing a way to reject the product freshwater when necessary. Note that
product freshwater should always be rejected during the first few minutes after startup, and
especially after biociding or chemical cleaning. For that reason alone, a means must be provided for
disposing of unwanted product freshwater.
In general, we do not recommend that the output of product freshwater be routed directly into a ves
sel's freshwater storage tank(s). If for any reason the watermaker should fail during operation, there
is a good chance that the entire supply of freshwater in the storage tank could become contaminated
by unpurified seawater. This is especially important if:
     · you have only a single tank for storing potable water.
     · you will be making extended offshore passages and depending on your watermaker for your
         potable water supply.
The preferred method for collecting product freshwater is to use portable 5 or 6 gallon jerry jugs or
a separate "day tank," which is isolated from the main storage tank. Some method should be de
vised for testing the product freshwater quality at the beginning and at the end of each operation.
When you are certain that the quality of the collected product freshwater is acceptable, it can be
transferred to the main storage tank.
    Note:   The important concept is to always have a minimum quantity of known good potable
    water available at all times, either in your main storage tank or in the collection container(s). The
    length of your expected voyage and maximum distance from a source of potable water will
    determine the size of the adequate minimum amount. Arrange your watermaking schedule to
    assure that you always have the minimum of known good potable water on board in one or both
    of your containers.
To route the product freshwater output of their watermakers, many users simply run a single 3/16"
I.D. hose directly from the output hose barb on the membrane housing to a single location, where the
water is tested and either discarded or run into a collection container.
Should you prefer to have your product freshwater output routed to two separate locations for test
ing/discarding and collection, the watermaker system includes a product 3 way valve for use in your
output plumbing. Refer to Figure A 1 for a routing diagram.

                                     Using your Watermaker
                                                          Watermakers like to be run often
Just like its predecessor, the PowerSurvivor 35, the PowerSurvivor 40E watermaker can be operated
in either manual or powered mode. This dual purpose feature of the watermaker has its roots in our
original products, which were designed as military quality survival equipment. Our deep experience
in this technology, combined with many years of active user feedback, allowed us to design a
watermaker that is easy to operate with little or no technical knowledge. There are no complicated
adjustments to make or gauges to monitor. By following the instructions below and paying attention
to system maintenance, you can expect years of trouble free operation.

                                                                Powered Operation
Pre Run Checklist: Before running your watermaker, always check the following:
      5   Any valves in the seawater intake, reject brine and product freshwater lines should be
      5   Check for bad ("rotten egg") smell from the water in the prefilter assembly. Replace the
          element and clean the housing, as required. Also check for foul water in any in line
          coarse strainer.
      5   Assure that the product freshwater output is routed to a drain for testing/discarding.
      5   Check battery or power supply voltage. Operating your watermaker below about 11 VDC
          is hard on the electric motor and dramatically reduces the output of product freshwater.
      5   Observe the seawater around your vessel. Is it clean enough to use for your seawater
          intake? There are several things to avoid feeding to your watermaker:
        · petroleum products, such as oil, fuel, thinners, paints, paint removers, etc.
        · chlorine treated water; e.g., most "dock" water
        · silty water--water contaminated by fine, hard, suspended particulates
        · putrid water, "red tides", or any seawater that smells or looks contaminated
      5 Make sure the cleaning valve lever on the pump is in the "down," or "run," position.
It is important to remember that the watermaker is designed to process clean, open ocean seawater.
Any departure from that standard for your seawater intake runs the risk of causing excessive wear or
damage to internal pump parts and/or the vulnerable reverse osmosis membrane, or producing
contaminated product freshwater.

 Note: Judging the quality of seawater input always involves a certain calculated risk. We know
 of watermaker systems that have been destroyed far offshore by intaking fresh whale excrement
 or oil contaminants from natural seepages--still, the chance of such things happening is normally
 small. On the other hand, regularly running a watermaker in an enclosed marina or harbor runs
 a much higher risk of harmful contamination. If you need to test a new installation while in a
 marina or harbor, monitor the water quality around your vessel carefully while testing. Most of the
 time you should be able to run the watermaker safely for enough time to check out the system.
 Don't sail away without testing a new installation!

Startup and Run:       Turn on the electric power to the watermaker. If there is air in the seawater in
take plumbing, the pump may require several minutes to draw up enough water to fill the hoses,
prefilter housing, pump and membrane housing. Since the pump is self priming, there is no need to
prime the system prior to running.
Shortly after the hoses and prefilter housing have filled with seawater, reject brine water should start
discharging from the pump. When all air has been forced out of the system (which may take several
minutes more), product freshwater should begin to flow from the hose barb at the end of the
membrane housing. Test and reject the product freshwater until the water quality is acceptable.
When good quality water is flowing continuously, direct the product freshwater output to your
freshwater collection tank. Continue to run until the desired quantity of water has been produced.

Shutdown and Storage: When the desired amount of water has been produced, the product
freshwater quality should be checked again. If water quality is good at both the beginning and end
of the run, it is likely that the collected water is good and can be safely transferred to the ship's po
table water storage tank.
If you plan to run the watermaker again within a couple of days, it can simply be turned off. If you
do not intend to use your watermaker again within a week, it should be treated with biocide to pre
vent bacterial growth on the membrane.

 Note: Bacterial growth is much more rapid in warm or tropical climates. If using the watermaker
 in a tropical environment, we recommend a biocide treatment if the watermaker will not be run
 again within the next three days!
At the end of a watermaker run, check the condition of water in the prefilter housing. If there is evi
dence of trapped material, clean the prefilter housing and install a clean prefilter element.

                                                            Manual Operation
Manual operation of the PowerSurvivor 40E is
useful if the ship's electric power supply fails. Use
the following instructions to convert your water
maker to manual operation:
1. Jog run the watermaker and stop it when the
   piston has traveled the maximum distance
   away from the pump, toward the drive
2. If necessary, disconnect the seawater intake,
   reject brine, and product freshwater hoses
   (Figure 5) and move the watermaker to a
   location convenient for manual operation.
3. Slide the black rubber boot on the piston shaft
   toward the pump to expose the coupling pin. Pull
   or tap out the coupling pin which connects the
   pump piston shaft to the drive slider shaft (Figure
   6). The pin is a fairly loose fit and should come
   out easily. Be careful not to lose it!
4. Using a 1/2" wrench, remove the four hex nuts
   holding the pump body to the drive assembly.
   Separate the drive assembly from the pump body
   and set the drive unit aside. Remove the black
   rubber boot from the piston shaft.
5. Align the holes in the handle bracket with the two pump bolts that are located above the piston
   shaft (Figure 7). Slide the bracket over the bolts and secure it with two of the hex nuts that held
   the drive assembly to the pump body. Do not overtighten these nuts.
6. Remove the clevis pin from the free end of the linkage attached to the handle assembly. Line up
   the holes in the handle linkage with the hole in the piston shaft. Insert the clevis pin through the
   linkage and the piston shaft and secure with a split ring (Figure 8).
7. Orient the hole in the handle (located above the linkages) between the holes in the handle
   bracket. Insert the second clevis pin through the holes and secure with the split ring (Figure 9).
8. If not already attached, connect the seawater intake, reject brine, and product freshwater hoses
   to be used for manual operation.

9. Operate the pump handle back and forth through its
    full range of travel in both directions. Pump at a rate
    of approximately one complete cycle every two
    seconds (one second in each direction). This is about
    the same rate at which the pump is driven by the
    motor during powered operation. Do not pump too
10. To return the watermaker to powered operation,
    reverse the above procedure. When coupling the
    pump piston shaft to the drive shaft, align the hole in
    the piston shaft with the mating hole in the drive shaft,
    insert the coupling pin, and slide the rubber boot over the pin to hold it in place. Then secure the
    drive assembly to the pump with the four hex nuts. Tighten the nuts evenly. Do not overtighten.

                                                             Special Conditions
Product freshwater output volume will vary somewhat,
depending on the salinity and temperature of the
seawater being processed. Figure 10 illustrates the
relationship between feed water temperature and the
quantity of product water. Factors which are known to
affect output or performance include:
    · High Salinity will decrease output slightly and
        lead to a modest increase in current draw.
        Effectively, the pump must work harder to
        remove a larger percentage of dissolved solids
        from the seawater.
    · Cold Water will have an effect similar to that of
        high salinity.
    · Silt or Sand can damage the membrane and internal pump components if not removed
        during prefiltration. If you must regularly process such water, consider installing a Silt
        Reduction Kit (see Kits & Accessories).
    · Foul Intake Seawater can seriously effect the quality of the product freshwater. The
        watermaker membrane is designed to remove the impurities found in clean, open ocean
        seawater. Processing of seawater with other kinds of impurities (1) may not remove those
        impurities and (2) may damage or destroy the membrane. See Maintenance and Service:
        Prefilter Maintenance below for more information on typical problems associated with foul
        water intake.
    · Low Battery Voltage will dramatically reduce the volume of seawater throughput and product
        freshwater output. We recommend not operating the watermaker if battery voltage is below
        11 VDC.

 Note on Red Tides: In many areas of the ocean, a phenomenon generally known as a "red
 tide" can occur. This generic name is used to describe an invasion of local waters b§y huge
 populations of micro organisms, which turns the seawater red. Occasionally, a red tide is
 accompanied by the death of local fish and other sea life, which can cause serious local pollution
 of the seawater. Although the watermaker membrane can remove the microorganisms that cause
 the red tide, it can not remove all of the chemical pollutants caused by large scale biological
 decomposition. Therefore, we do not recommend using the watermaker to process seawater when
 a red tide is present.

                                    Maintenance and Service
                                                                 A little love goes a long way
We've worked hard to design a product that is simple to operate and maintain. However, regular
attention to the few maintenance requirements of this equipment is critically important. This section of
the Owner's Manual describes both the routine and the long term maintenance requirements of the
PowerSurvivor 40E.
Much of our knowledge of maintenance requirements, watermaker performance, and potential
problems is a result of feedback from actual users over many years. Following these instructions will
help keep your product freshwater quality good and your watermaker running trouble free.

                                                                   Pump Maintenance
Once properly installed, the main watermaker pump and drive assembly requires little attention. You
should regularly inspect the equipment and check for any leakage of seawater, or oil leaks from the
drive assembly. Any leakage is a sign of a problem and should be corrected.
Make certain that the watermaker remains dry.
Exposure to saltwater can cause rapid corrosion
of the drive assembly and/or damage to the
electric motor. Keep all electrical connections
clean, dry and tight.
After every 1000 hours (approximately) of use,
replace the seals in the pump (See Seal
Replacement below). After approximately 5000
hours of use, have the electric motor inspected
for brush wear and commutator condition.

Pump Piston Shaft Lubrication: It            is ex
tremely important to lubricate the pump piston
shaft periodically, especially after cleaning the
membrane. The piston shaft is visible at the side
of the drive assembly, where the pump connects
to the drive (see Figure 11). Jog run the
watermaker and stop it when the piston shaft is
at its point of farthest travel away from the pump (i.e., towards the drive assembly). Assure that the
watermaker is off and can not be started accidentally while you work. Clean the exposed piston shaft
with a clean rag and lubricate the shaft with non petroleum silicon lubricant.

                                                              Prefilter Maintenance
Background: Maintaining a healthy watermaker largely involves taking proper care of the
prefilter assembly and seawater intake plumbing. Failure to do so is the most common cause of the
two most frequent types of watermaker "failure" we hear about: (1) producing diminished or no
freshwater output, or (2) producing "bad smelling" product freshwater. Here is what happens:

No Freshwater Output:             The most common cause of diminished or no product freshwater
output is air entering the seawater intake system at some point. The pump volume is small and the
pressure required to press water through the membrane is rather high (about 800 psi). Since air is
highly compressible, a very small amount of air can keep the pump from producing enough pressure
to produce product freshwater. Periodically inspect and test the entire seawater intake system to
assure that all joints and fittings are airtight, especially the connections at the prefilter assembly.
(Note: Be aware that a stable air gap at the top of the prefilter housing is not uncommon, and
doesn't necessarily mean that air is getting to the pump itself.)

Bad smelling Product Freshwater:                 The purpose of the prefilter assembly is to trap any
particulates in the intake seawater that are larger than 30 microns. A coarse strainer (if installed)
performs the same chore for contaminants of larger size. In each case, trapped material remains in
the prefilter housing (or strainer bowl) until removed.
Much of the trapped material is organic: plankton, seaweeds and flotsam of all types. After a
watermaker has been turned off, this material soon begins to decompose. As it does, it breaks down
into a number of chemicals composed of smaller molecules. Some of these molecules are small
enough to pass through the watermaker membrane along with the product freshwater. Perhaps the
best known example of such a chemical is hydrogen sulfide, a gas which (in small concentrations)
smells like "rotten eggs."
Two main factors affect the speed with which these products of organic decomposition will
contaminate a watermaker system: (1) the ambient temperature and (2) the quantity of trapped ma
terial. We realize that many users of our equipment run their watermakers in near shore situations
while anchored. The amount of trapped material is usually high in such locations, and the prefilter
assembly will require more frequent attention. Moreover, the high ambient temperatures in tropical
locations greatly accelerate the rate of such decomposition. Users in temperate climate areas or users
processing open ocean seawater during offshore passages are less likely to require the same
Prefilter Maintenance:            At the end of each run of your watermaker, examine the prefilter
assembly (and the coarse strainer, if installed) for trapped material. If anything is visible, perform the
following procedure:
1. Unscrew the prefilter housing, remove the dirty prefilter     Warning: If you purchase after
                                                                 market filter elements, be certain they
     element, and discard the water in the bowl. Do not lose
                                                                 are made from polyester fibers. In
     the large o ring at the top of the bowl.
                                                                 particular, be wary of elements made of
2. Clean the inside surface of the prefilter bowl. Inspect       paper materials. They look very similar,
     and clean the o ring at the top of the bowl. Lubricate the  but are designed for use with other
     o ring and the threads of the prefilter housing with a      types of water purification systems and
     light coat of silicon grease.                               are harmful to the membranes and high
3. Install a clean filter element and screw the prefilter bowl   pressure pumps used in reverse osmosis
                                                                 watermakers. Be certain you purchase
     back on securely.
                                                                 only polyester filters of 30 micron (or
                                                                 finer) size.

4. If the watermaker will not be used within the next three days, treat it with biocide (see Biocide
   Treatment below).
5. Tie a line through the center of the dirty filter element and, if underway, tow it behind the
   vessel for a few minutes. If the vessel is anchored, hang the dirty filter over the side of the boat
   so that it is underwater, and jerk it up and down a few times to dislodge the contaminants.
6. Dry the filter element thoroughly, preferably in the sun. Then store it for use as a clean filter
   the next time the prefilter assembly is serviced.
We do not recommend scrubbing filter elements with brushes or other abrasive tools or materials, as
such treatment is unnecessary and greatly shortens the life of the filter element. If filter elements are
cleaned regularly as directed, and not allowed to become extremely dirty, they can be expected to
last for many months of service with nothing more than the gentle cleaning described above. Clean
filter elements also help assure unrestricted flow of intake seawater to the pump.

                        Membrane Storage, Biociding & Cleaning
The reverse osmosis membrane inside the membrane housing is an expensive and delicate compo
nent of your system. When properly cared for, it can be expected to last for several thousand hours
of use. Improper use, maintenance or handling can damage or destroy the membrane very quickly.

Biocide Treatment:         The primary purpose of a bio
cide treatment is to kill biological growth and bacteria Warning: Be sure to follow the
that are present inside the membrane. It also functions flushing procedures described below to
as a membrane wetting agent for extended storage. ensure that the biocide solution does not
Over time, bacteria can multiply and adhere to the get into the freshwater supply.
membrane surface, thus gradually decreasing its
effectiveness. When the watermaker is not to be used for
an extended period of time, it should be biocided. A biocide treatment is effective for approximately
one year (storage temperature < 25°C/77°F). If longer storage is required, the biocide treatment
should be repeated every year.
In temperate climates, the maximum period of time the watermaker should be stored without
biociding is approximately one week.
In hot or tropical climates, the
watermaker should be biocided if it
will not be used within the next three
days. Follow these directions to
perform a biocide treatment of your
1. Lift the lever on the cleaning valve
on the pump to place it in its "clean"
or "up" position (see Figure 12).
2. Fill a clean plastic container or
bucket with two quarts (approximately
2 liters) of clean water. Freshwater is
preferable, but clean seawater may be
used if freshwater is not available.

(Caution: Never use chlorinated freshwater. This may damage the membrane.)

3. Mix two spoonful (approximately 20 grams, or 1% by weight) of dry Biocide chemical with the
water in the container and stir until completely dissolved.
4. Use your product 3 way valve (or move the product water output hose) to be sure that any
water flowing from the product freshwater output is properly discarded.
5. Turn the lever on the prefilter 3 way valve to the alternate intake position. Run the 3/16" alter
nate intake hose with the strainer attached into the container of biocide solution.
6. Turn on the watermaker and run it until almost all of the biocide has been drawn from the
container and foamy biocide solution is ejecting from the reject brine hose. If there is a chance
that the watermaker will be subjected to freezing conditions, continue to run until air is being
ejected from the reject brine hose. (Note: If the membrane freezes, it must be slowly and
completely thawed before the watermaker may be used again.)
7. Turn off the watermaker. It is now ready for storage for up to one year.
If seawater was used instead of freshwater, repeat the biocide procedure with freshwater as soon as
possible. Repeat the above procedure at least once a year if the watermaker is not being operated.

Cleaning the Membrane: We do not recommend casual or regular cleaning of the reverse
osmosis membrane in the watermaker--it should only be done when needed. Under normal use
conditions, when only open ocean seawater is being processed, cleaning
the membrane should rarely (or never) be necessary. Proper biocide Note: Buildup of de
treatments prior to extended periods of non use will prevent biological posits and reduction in
growth on the membrane surface. Under these conditions and with proper product freshwater flow
care, a membrane can be used for years without requiring a cleaning.         usually    take    place
                                                                             gradually over extended
Cleaning the membrane is only necessary if contaminants are deposited
                                                                             periods of time. Sudden
on, and adhere to, the membrane surface in sufficient amounts to affect
                                                                             reduction or stopping of
the output of product freshwater. Usually this condition also causes battery
                                                                             product water output is
current to increase. There are two main types of such deposits and a
                                                                             rarely caused by a dirty
different chemical cleaner is needed for each type:
                    ·   Organic Growth--usually caused by
                        processing brackish water or failure to properly store a membrane during
                        extended periods of non use. Use Alkaline     Cleaner.
                    ·   Mineral Scale--caused by          mineral impurities in the intake water
                        supply. Use Acid Cleaner.
The only indication that a membrane might benefit from cleaning is a substantial reduction in the
quantity of product freshwater output, all other factors being normal (e.g., battery voltage, salinity,
seawater temperature). The best way to detect such a problem is by keeping an accurate log of
product freshwater output at known battery voltages. Such a practice is highly recommended.
If you have determined that your membrane needs cleaning and you know the type of deposits
(mineral or organic), use the appropriate cleaner. If you do not know the nature of the deposits, try
cleaning first with the Alkaline  Cleaner and check for improvement in product freshwater output.
If output remains poor, repeat  the cleaning process using the Acid Cleaner. Never mix the two
types of cleaners! Always flush well with clean water between processes if performing both alkaline
and acid cleaning. The following directions apply for both types of membrane cleaners:

1. Lift the lever on the cleaning valve on the pump to place it in its "clean" or "up" position (see
   Figure 12).
2. Discard any dirty seawater in the prefilter assembly. Clean the housing and install a clean
3. Fill a clean plastic container or bucket with one gallon (approximately 4 liters) of clean water.
   Freshwater is preferable, but clean seawater may be used if freshwater is not available.
   (Caution: Never use chlorinated freshwater. This may damage the membrane.)

4. Mix four spoonful (approximately 40 grams) of either          Acid Cleaner        or   Alkaline
   Cleaner    (not both!) with the water in the container and stir until the cleaner is completely
   dissolved. The water should be warm, but not over 120° F (49° C).
5. Turn the lever on the prefilter 3 way valve to the alternate intake position. Run the 3/16"
   alternate intake hose with the strainer attached into the container of cleaning solution.
6. Disconnect the reject brine water hose from its drain (or use a separate length of hose) to
   route the reject brine water back into the container of cleaning solution during the following
7. Turn on the watermaker. Discard any solution coming from the reject brine hose for about 30
   seconds. Then run the reject brine water hose back into the container of cleaning solution to
   allow recirculation of the cleaner.
8. Continue to run the watermaker for about 15 minutes, to assure that the cleaning solution is
   well circulated through the pump and membrane.
9. Turn off the watermaker and allow the membrane to soak in the cleaning solution for 5 to 10
   hours, or overnight. For severe fouling, repeat steps 8 and 9 of this procedure.
10. When the soaking is finished, remove the reject brine hose from the cleaning solution
    container and run the watermaker again. Discard the first pulses of the reject brine water.
    When the reject brine flow becomes cleaner, return the reject brine hose to the cleaning
    solution container for recirculation.
11. Continue to run the watermaker and recirculate the cleaning solution for another 30 to 60
12. When cleaning is complete, turn off the watermaker. Reconnect the reject brine hose to its
    normal drain location.
13. Remove the alternate intake hose and strainer from the cleaning solution and place them into
    a container of clean, warm (non chlorinated) freshwater. If freshwater is not available, clean
    seawater may be used if its temperature is above 68° F (20° C).
14. Turn on the watermaker and flush warm water through the system for 5 minutes.
If the watermaker will be stored for more than a week (three days in warm climates), it should now
be treated with the biocide solution.

                                                                       Seal Replacement
After approximately every 1000 hours of use, the watermaker should be partially disassembled,
cleaned, and lubricated with non petroleum silicon grease. At that time, the seals should be inspected
and replaced, as required. The standard Repair Seal Kit (included in the Extended Cruising Kit--see
Kits and Accessories) is available from Katadyn and most marine retail stores. It includes a complete
set of replacement seals and other components for all user serviceable parts of the watermaker.
It is unlikely that you will have to replace all of the seals contained in the kit at every servicing. The
dynamic seals work harder and wear faster than others, and will need to be replaced more often.
We recommend that you save old seals. Most of them are still useable and could be kept in a kit for
emergency repairs.

Preparation:     Before beginning to disassemble the watermaker, read the following instructions
completely. Have a Repair Seal Kit on hand. Refer to the drawings in Figures A 2, A 3 and A 4
in the Appendix to identify the major components of the pump and the parts contained in the kit to
make sure none are missing. Prepare a clean flat workspace with good lighting. Have the following
tools and materials available for a complete rebuild:

Tools Needed:

        piston seal installation tool                           small scissors
        1/2 " open end wrench                                   10x loupe or magnifier
        5/8 " open end wrench                                   silicone grease
        1/4 " allen wrench                                              included in Repair Seal Kit
        medium flat blade screwdriver                           clean rags
        small standard pliers

1. Before beginning disassembly, run the watermaker and stop it when the piston shaft is at its
     farthest point of travel away from the pump (i.e., toward the drive assembly). This provides
     enough room for sliding the rubber boot toward the pump in Step 3.
2.   Disconnect the pump from the drive assembly by first removing the two hex nuts and 5"
     sockethead capscrews from the check valve plate, using the 1/2" open end wrench and 1/4"
     allen wrench. Also remove the two hex nuts securing the pump back plate to the drive assembly.
     See Figure R 1.
3.   Slide the black rubber boot on the
     piston shaft toward the pump to
     expose the drive shaft coupling
     pin. Use a small allen wrench or
     similar tool to push the coupling
     pin out of the drive shaft (see
     Figure 6). Be aware that the
     coupling pin fits loosely in the
     drive shaft and may fall out when
     the rubber boot is removed. Be
     careful not to lose it. Separate the
     drive assembly from the pump
     and set the drive assembly aside.
4.   Remove the two 3" socket head
     capscrews using a 1/4" allen
     wrench. Separate the pump back
     plate and piston assembly from
     the pump body (see Figure R 2).
5.   If the piston assembly remained
     with the pump back plate when it
     was removed, pull the piston out
     of the back plate and set it aside.
     If the piston stayed in the main
     pump body, pull it out of the
     cylinder. If the piston assembly is
     difficult to remove from the pump
     body, insert a small allen wrench
     or Phillips screwdriver through the
     coupling pin hole. This will
     provide a "t handle" with a better
     grip for extracting the piston assembly. Be aware not to
     damage the surface of the piston shaft.
6.   Remove the large o ring (8012588) from its groove in the
     side of the pump back plate that faces the pump body.
     Remove the wiper block and spacer (if present) from the
     pump back plate. Use needle nosed pliers to pull the old
     wiper block seal out of the wiper block. See Figure R 3.
     (Note: This seal is usually damaged during removal. Be sure
     you have a replacement on hand before removing it.)

7. From the side of the pump back plate that contained the large o ring, insert a round drift of
    slightly smaller diameter than the hole for the piston shaft. (Note: a small socket on an extension
    or a wooden dowel makes a suitable drift). Tap the drift with a mallet to drive the two backup
    washers, two piston shaft seals and the piston shaft bushing out of the pump back body. See
    Figure R 4.
8. Remove the remaining two 3/4" sockethead capscrews
    from the check valve plate using a 1/4" allen wrench.
    Separate the check valve plate from the pump body. If it
    is difficult to remove, try rotating the check valve plate
    90°. This provides a better grip for pulling the check
    valve plate from the pump body.
9. After the check valve plate has been separated from the
    pump body, the membrane tube plug will remain in
    either the check valve plate or the pump end of the
    membrane housing. Use one of the following
    procedures to remove it:
           A.     If the membrane tube plug remains in the membrane housing, insert a hard, thin edge
           (e.g., a dull pocket knife) between the tube plug and the fiberglass molding of the
           membrane housing. Work the blade sideways to pry the tube plug out slightly, until there is
           enough of a gap between the tube plug body and the membrane housing to insert a flat
           blade screwdriver. Then use two screwdrivers on opposite sides of the tube plug to carefully
           work it out of the membrane housing. Avoid gouging or damaging the membrane housing
           or the tube plug.
           B.     If the membrane tube plug remains in the check valve plate, use a thin edge and/or
           flat blade screwdrivers, on opposite sides of the membrane tube plug, to carefully pry the
           plug out of the check valve plate. Avoid damaging the membrane tube plug.
10. Disassemble the valves in the check valve
    plate (see Figure R 5.) Use a 5/8" open
    end wrench to unscrew the intake valve
    seat. Remove the intake poppet valve and
    its spring. If necessary, use needle nosed
    pliers to remove the poppet valve
    retainer. Then use the pliers to lift out the
    reject poppet valve and its seat. Grip the
    x shaped ribs of the reject poppet valve
    and pull straight up. The seat will be
    pulled out along with the valve. After the
    reject poppet valve and its seat have
    been removed, retrieve the reject poppet
    valve spring from the bottom of the check
    valve plate cavity.
This completes the disassembly of all user
serviceable   parts    of   the   Katadyn
PowerSurvivor 40E watermaker.

Reassembly: Before you begin reassembly of the watermaker, clean all parts using clean, lint free
rags. At this time, all parts should be carefully inspected for wear or damage. Use a 10x magnifier
or loupe to examine the seals, o rings and other small parts. Stubborn rust stains and other deposits
on metal parts can be cleaned with a soft metal wire brush (e.g., stainless steel or brass). Do not use
polishes, cleaning compounds containing abrasive materials, or regular steel wire brushes. During
reassembly, refer to Figures A 3 and A 4 in the Appendix for full size drawings and identification of
the components included in the Repair Seal Kit.
In the following procedure for reassembling the watermaker, it is assumed that all parts have been
cleaned and that all o rings, seals, and mating surfaces have been lightly lubricated with non
petroleum silicon grease (supplied with the Repair Seal Kit). References to the Repair Seal Kit will be
abbreviated to "RSK."
 Warning: Use only non petroleum silicon grease to lubricate your watermaker. Lubricants with
 a petroleum base will damage several watermaker components, including the reverse osmosis
 membrane. Be especially cautious of lubricants that "contain" teflon, silicon, etc.--such products
 could also contain petroleum based components. An ample supply of silicon grease is included
 with each RSK.
1. Make a note of the correct orientation of the old cup ring and PIP seal and then remove them
   from the piston assembly. Since these components are made of rather stiff rubber, it is usually
   easier to cut them off. Use a small screwdriver to wedge under the cup seal and pry it up. While
   holding it up, cut it with a small
   pair of scissors. Repeat this process
   for the PIP ring.
2. Refer to Figure R 6 during the
   following procedure. Place the
   piston assembly on a flat, stable
   surface with the shaft pointing up.
   Slide the installation tool (provided
   in the RSK) over the piston shaft
   with the wide end down. Lubricate
   the new PIP ring, cup seal and the
   installation tool with silicon grease.
   With the grooved side facing up,
   slide the PIP ring down the
   installation tool and onto the piston. Repeat this
   process for the cup seal. Note that the grooved side of
   the cup seal should be facing down; i.e., the grooved
   sides of the PIP ring and the cup seal should be facing
   each other. When finished with the installation,
   remove the installation tool from the piston shaft.
3. Lightly lubricate the cylinder in the pump body with
   silicon grease. Slide the finished piston assembly,
   shaft first, into the pump body from the side of the
   pump body that faces the check valve plate. Install the
   large o ring (8012588) into its groove in the pump
   back plate and lower the pump back plate over the
   piston shaft. The side of the back plate with the large
   o ring should be facing the pump body. See Figure
   R 7.

4. Refer to Figure R 4. Slide one of the white backup washers over the piston shaft and press it into
   its bore in the pump back plate. Next, slide one of the two black rubber piston shaft seals over
   the piston shaft and work it into the bore on top of the backup washer. Note that the shaft seals
   are flared out on one side. It is important that the flared (wider) side should be down, facing the
   shaft bore. Install the second piston shaft seal in exactly the same way. It too should be installed
   with its flared side facing down. Next, install the second white backup washer and, finally, the
   white bushing. Slide the installation tool (used in Step 2 above) over the piston shaft with the
   narrow end facing the white bushing. Use the installation tool to press the shaft washers, seals
   and bushing all the way into the bore. When finished, the outside end of the bushing should be
   flush with the bore opening.
5. Install a new wiper block seal into the wiper block. The seal must be pressed into a groove inside
   the bore in the middle of the wiper block with the narrower side of the seal facing outwards.
   Form the seal into an oval shape by squeezing it between your fingers and press one side of the
   seal into the groove in the wiper block. Once an edge of the seal is started into the groove,
   carefully work the rest of the seal into place. After the seal has been installed, slide the spacer (if
   present) and wiper block onto the piston shaft. The side of the wiper block from which the seal
   was installed should be facing outward. Refer to Figure R 3.
6. Prepare the check valve plate for reassembly by installing the new poppet valves. Note that both
   the intake and reject poppet valves and valve springs are identical. Refer to Figure R 5 during the
   following procedure:
           A. Lower a new poppet valve spring into the bottom of the bore in the check valve plate.
           Use your little finger or the eraser end of a pencil to press it into its seat. It is designed to
           be a light press fit and, when installed correctly, it should stay vertical in place during the
           next step.
           B. Use needle nosed pliers to carefully lower one of the new poppet valves into the bore.
           The poppet valve should rest on top of the spring with the poppet's cross side facing up.
           C. Lower the new reject valve seat into the bore and use a finger to press it down as far
           as it will go. Note that the hole in the middle of the valve seat has a beveled edge on one
           side. The side with the beveled edge must face downward; i.e., it must face the poppet
           valve. When properly installed, the valve seat should fit neatly over the poppet valve. Test
           the poppet valve by pressing it with the eraser end of a pencil. It should move up and
           down slightly and seat squarely in the valve seat.
           D. Locate the small depression in the center of one end of the poppet valve retainer and
           press the second valve spring into the depression. It was designed as a light press fit and
           should stay in place after being installed. Then lower the poppet valve retainer into the
           bore in the check valve plate with the spring facing upward.
           E. Lower the second poppet valve into the bore in the check valve plate and rest it
           carefully on top of the valve spring.
           F. Remove the old o ring (8013015) from the intake valve seat and replace it with the
           new one from the RSK. Carefully screw the intake valve seat into the check valve plate and
           tighten with a 5/8" open end wrench. Use the eraser end of a pencil or a small allen
           wrench to test the operation of the intake poppet valve. The poppet valve should move
           down slightly and then spring back up against its seat.

7. Replace the two large o rings (8012947) and the two smaller o rings (8013006) on the
    membrane tube plug with new o rings from the RSK. Insert the small end of the membrane tube
    plug into the exposed hole in the membrane element (which should have been left installed in the
    membrane housing) and press the tube plug into the membrane housing as far as it will go. The
    ridge on the outside of the tube plug should be flush against the end of the membrane housing.
8. Press the piston as far as it will go toward the pump back plate. Install a new o ring (8012588)
    into its groove in the check valve plate.
9. Press the check valve plate over the exposed end of the membrane tube plug. If necessary, rotate
    the check valve plate to align it accurately with the pump body and install the 3/4" and the 3"
    sockethead capscrews. Check that the
    two large o rings (8012588) in the
    check valve plate and the pump back
    plate are still seated in their grooves
    and then tighten the four capscrews
    evenly with a 1/4" allen wrench.
10. Slide the two 5" sockethead capscrews
    through the holes in the check valve
    plate and the back plate. Slide the
    rubber boot onto the piston shaft. See
    Figure R 8.
11. Insert a small screwdriver or an allen
    wrench through the hole in the piston
    shaft and rotate the shaft to align its
    hole with the hole in the slider shaft of the drive assembly. When they are aligned, slide the holes
    in the drive assembly bracket over the studs projecting from the pump back plate. Insert the
    coupling pin through the aligned holes in the slider shaft and piston shaft. Push the rubber boot
    over the coupling pin to hold it in place.
12. Install the four hex nuts on the studs
    projecting from the pump back plate
    through the drive assembly bracket
    and tighten evenly with a 1/2"
    open end wrench and 1/4" allen
    wrench. Do not overtighten these
13. To replace the o rings beneath the
    cleaning valve assembly, refer to
    Figure R 9. Unscrew the two
    sockethead capscrews using a
    5/32" allen wrench and remove the
    assembly from the pump body.
    Remove old o rings (8012594) and
    (8012697) and replace them with
    new o rings from the RSK. Replace
    the cleaning valve assembly on the
    pump body and install the two capscrews. This completes the procedure for reassembly of the
    watermaker. When operation is commenced again, carefully inspect the watermaker for proper
    operation and any leaks or other signs of incorrect assembly.

                                                    Troubleshooting Flowchart
Use the flow chart below to diagnose and solve the most common problems associated with use of
the PowerSurvivor 40E watermaker. The information in this chart is a distillation of the experience of
many users, our field representatives, and customer support staff. Use it first if you encounter a
problem. If the problem persists, our Customer Support department is ready to help.

           A collection of useful information for the Katadyn watermaker owner

Biocide     a chemical used to inhibit biological growth in the reverse osmosis membrane during
storage or extended periods of non use.
Filter a device which removes suspended solids from a fluid stream. A filter is not the same as a
reverse osmosis membrane.
Micron     a metric unit of measurement equal to one thousandth of a millimeter, or one millionth of a
Osmosis       the process of diffusion between two water sources through a semipermeable
membrane, resulting in both water sources striving to reach an equilibrium in the concentrations of
dissolved substances.
Pickling    a slang term for the process of flushing the membrane with biocide solution (see Biocide).
Potable    suitable for drinking, especially water. With regard to a desalinator, it is generally
defined as water with 1500 ppm or lower of dissolved solids that is relatively free of harmful
PPM parts per million. Used as a measure of the quantities of substances dissolved in water.
Prefilter a filter placed in a desalinator system to remove suspended solids from the feed      water
before it reaches the high pressure pump and reverse osmosis membrane.
Pressure Relief Valve      a valve that relieves pressure in a system to prevent damage to system
components. In the PowerSurvivor 40E, the relief valve is set to open at 1000 psi, to prevent damage
to the pump and membrane.
Product Freshwater potable water produced by the reverse osmosis process.
PSI pounds per square inch--a unit for measuring pressure.
Reverse Osmosis (RO) a reversal of the natural osmosis process between  two fluids which
occurs when water is forced under pressure through a semipermeable membrane. It produces
potable water.
Salinity   a measure of the amount of salts, minerals, and other dissolved solids contained in a
water source. Salinity (see TDS) is measured in ppms.
Salt    the common name for the chemical sodium chloride. Open ocean seawater is about 3%
dissolved salt, or about 33,000 ppm of sodium chloride.
Seal a device (such as an o ring) used to prevent fluid leakage between two system components.
Semipermeable the characteristic of some materials (e.g., a reverse osmosis membrane) that
makes them relatively porous to some substances while blocking the passage of others. Unlike normal
filters, semipermeable membranes usually operate at the molecular or atomic level, allowing much
finer "filtering" than simple mechanical filters.
TDS     Total Dissolved Solids--a type of measure commonly used to indicate the purity of water,
usually expressed in ppms. A standard TDS meter measures only the electrical conductivity of the
water being tested. Therefore, it is only able to measure dissolved substances that are ionized in
solution (e.g., sea salt). In particular, they do not indicate the presence of non ionized substances,
such as bacteria, viruses and many other soluble chemicals.


                                                                    Kits & Accessories

Preventive Maintenance Package
Part # 8012607

An expanded cruise kit which includes all components of the    Extended Cruise Kit, plus a Silt
Reduction Kit. This kit is strongly recommended for extended cruising and variable water condi

Silt Reduction Kit
Part # 8012859
This kit is intended to protect the high pressure pump and reverse osmosis membrane from excessive
exposure to silt and other suspended particulates. It should be used in brackish water, shallow water,
inland waterways, areas of glacial runoff and other similar situations. The Silt Reduction Kit
includes a 5 micron prefilter which follows the standard 30 micron filter supplied with the water
maker. Also included is a 1 amp boost pump to ensure adequate intake flow to the watermaker.

Extended Cruise Kit (Recommended)
Part # 8012606

Includes items needed for regular care and seasonal maintenance and/or storage. Contains (1)     Re
pair Seal Kit, (1) container Acid Cleaner, (2) containers Alkaline Cleaner, (1) container
of Biocide and (6) 30 micron prefilter elements.

Repair Seal Kit (Recommended)
Part # 8012610
A set of all user serviceable seals and parts for the high pressure pump. This kit also includes re
placement gear oil for the drive assembly. A     Repair Seal Kit      should be installed after each
approximately 1000 hours of use.

Cleaning & Storage Chemicals
               Acid Cleaner (8 oz.)                          Part # 8013608          (1)
               Alkaline Cleaner (8 oz.)                      Part # 8013615          (1)
               Biocide (8 oz.)                               Part # 8013609          (1)

Note: You may order parts and kits through our retailers or from Katadyn North America directly
at 800 755 6701. If ordering directly, you'll need to provide detailed shipping instructions as well
as credit card information.

                           QUESTIONS? CALL 800 755 6701

                                         Service Log

Date   Used Biocide   Cleaned Membrane   Other Service


This Limited Warranty gives you specific legal rights, and you may also have other rights which vary
from State to State. Some States do not allow limitations on how long an implied warranty lasts, or
do not allow the exclusion or limitation of incidental or consequential damages, so the above
limitations or exclusions may not apply to you.

What Is Covered: KATADYN warrants to the original purchaser that the PowerSurvivor 40E
Watermaker enclosed with this Limited Warranty conforms to the manufacturer's specifications and is
free from defects in workmanship and material for a period of three years from the date of original
purchase. If the original purchaser transfers the PowerSurvivor 40E Watermaker to another person,
this Limited Warranty will not be enforceable by the person to whom the product is transferred.

What We Will Do To Correct Problems: Should your PowerSurvivor 40E Watermaker prove
defective during this period, you must notify KATADYN at 9850 51st. Avenue North, Minneapolis,
MN 55442, or an authorized distributor or dealer of KATADYN. You must permit KATADYN or its
representatives to make such investigation, examination and tests as KATADYN deems appropriate
and, if requested to do so, you will return the product to the factory at the address set forth above.
KATADYN's sole obligation under this Limited Warranty is, at its option, to repair or replace the
defective unit, without charge for parts or labor. Postage, insurance or shipping costs incurred in
presenting your PowerSurvivor 40E Watermaker product for warranty service are your responsibility.

What Is Not Covered: This Limited Warranty is contingent upon proper use and maintenance of the
product; it does not cover products that have been improperly shipped or improperly installed, or
that have been misused, abused, neglected, or improperly maintained, cleaned or stored, or that
have been serviced other than by an authorized KATADYN distributor or dealer. The PowerSurvivor
40E Watermaker can be damaged by oil, grease, chlorine and certain other organic or inorganic
substances. It must be cleaned carefully after use, and requires periodic maintenance. Failure to
observe the precautions listed in the User's Manual may constitute improper use or maintenance of
the product and causes this Limited Warranty not to apply. This Limited Warranty does not cover
products from which the KATADYN label or logo or the rating label or serial number has been
removed. This Warranty does not extend to normal wear or to replacement items, including but not
limited to filter cartridges, pump seals and O rings.

  Katadyn North America
  9850 51 Avenue North
Minneapolis MN 55442, USA
   Phone: 800 755 6701
    Fax: 800 548 0406

   Katadyn Products Inc.
        Birkenweg 4
     8304 Wallisellen
  Phone: +41 1 839 2111
   Fax: +41 1 830 7942

                            Print No: 8012602/0

Ad by Google

The information on this web site has not been checked for accuracy. It is for entertainment purposes only and should be independently verified before using for any other reason. There are five sources. 1) Documents and manuals from a variety of sources. These have not been checked for accuracy and in many cases have not even been read by anyone associated with I have no idea of they are useful or accurate, I leave that to the reader. 2) Articles others have written and submitted. If you have questions on these, please contact the author. 3) Articles that represent my personal opinions. These are intended to promote thought and for entertainment. These are not intended to be fact, they are my opinions. 4) Small programs that generate result presented on a web page. Like any computer program, these may and in some cases do have errors. Almost all of these also make simplifying assumptions so they are not totally accurate even if there are no errors. Please verify all results. 5) Weather information is from numerious of sources and is presented automatically. It is not checked for accuracy either by anyone at or by the source which is typically the US Government. See the NOAA web site for their disclaimer. Finally, tide and current data on this site is from 2007 and 2008 data bases, which may contain even older data. Changes in harbors due to building or dredging change tides and currents and for that reason many of the locations presented are no longer supported by newer data bases. For example, there is very little tidal current data in newer data bases so current data is likely wrong to some extent. This data is NOT FOR NAVIGATION. See the XTide disclaimer for details. In addition, tide and current are influenced by storms, river flow, and other factors beyond the ability of any predictive program.